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Received 16 December 2002 / Received in final form 14 April 2003
Published online 4 June 2003 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Abstract. The ground- and first-excited state energies of a magnetopolaron in a two dimensional parabolic
quantum dot are studied within a variational calculation for all coupling strength. The Lee-Low-Pines-
Huybrecht variational technique that is developed previously for all coupling strength has been extented
for polarons in a magnetic field. The dependence of the polaronic correction on the magnetic field and
the confinement length is investigated. The polarization potential and the renormalized cyclotron masses
as a function of electron-phonon coupling strength and the strength of both confinement potential and
magnetic field are also studied within the same approach.

PACS. 73.63.Kv Quantum dots – 71.38.Fp Large or Fröhlich polarons – 63.20.Kr Phonon-electron and
phonon-phonon interactions

1 Introduction

Recent technological advances in the fabrication of nanos-
tructures have created low-dimensional semiconductors, of
which quantum dots (QD) have drawn more attraction as
being confined in all the three spatial directions. This con-
finement is very important since it brings in quantum ef-
fects when the electron wavelength is of the same order as
the confinement length. Recently, a large number of the-
oretical and experimental investigations have gone into
understanding and exploring various properties of these
systems [1].

Electron-phonon interaction, which plays an important
role in electronic and optical properties of bulk materials,
will have pronounced effect in low-dimensional systems,
in particular in QDs. Polaronic effects in QDs are studied
of every aspects: the ground-state energies are calculated
for a QD with spherical [2] and parabolic [3] potentials.
The presence of a magnetic field makes the polaron prob-
lem in QDs more interesting, since its existence means
an additional confinement. Recently, a number of authors
have extensively studied magnetopolarons in various type
of approximations [4], and an recent review of the subject
has been given by Devreese [5]. It should be mentioned
that the rigorous all-coupling method in the polaron the-
ory is based on the Feynman path integral method, where
the Jensen-Feynman inequality reveals some problems for
nonzero magnetic field. This problem, however, has been
solved by a recent work [6].

In the weak coupling case the states are extended and
perturbation theory can be used, while in the other strong
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coupling limit, which corresponds to localized states, adi-
abatic methods are employed. Between them, variational
techniques are adopted, where certain canonical transfor-
mations called Lee-Low-Pines (LLP) are performed and
each of which has its own variational parameters. One of
these transformations is modified by Huybrechts [7] to ex-
tend this approach to all coupling strength. This LLPH
method has been successfully employed in calculation of
the polaronic corrections to the ground- and first-excited
states in QD by Mukhopadhyay and Chatterjee [8] (MC).
The polaronic effects in QDs have also been examined by
the Feynman-Haken path integral method [9] in the ab-
sence of a magnetic field.

The polaronic effects in low dimensional systems have
been subjected to experimental investigations by means
of optical properties and cyclotron resonance studies. For
examples, experiments made recently in QD’s are far-
infrared optical spectroscopic measurements [10], the mul-
tiphonon photoluminescence [11] and Raman [12] spectra.
Cyclotron resonance absorption and emission have been
performed in GaAs [13]. A recent interesting work [14] in-
vestigates resonant electron-phonon interaction in a semi-
conductor QD, which predicts pinning of the excited en-
ergy levels to the ground state level plus one optical
phonon, whose effect is to be observable through optical
spectroscopic measurements.

In this paper we shall consider polaronic corrections in
a QD embedded in two dimension, and in magnetic fields.
We shall employ the LLPH method to obtain the ground-
and first relaxed excited state energies of a magnetopo-
laron embedded in 2D QD and related cyclotron masses.
We also consider the polarization potential in the pres-
ence of magnetic field, which is the direct measure of the
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induced charge density and was first examined by Peeters
et al. [15] for magnetopolarons in bulk systems. Although
the Feynman-Haken path integral approach to the prob-
lem yields more accurate results than the LLPH method,
our approach provides results not only for ground state
energy but also for the relaxed excited state energies and
improves the result for the ground state energy of refer-
ence [8]. The layout of the present work is as follows: in
Section 2, the formulation of the problem is presented in
the framework of the LLPH method. The limiting cases,
that is, extended and localized states are discussed in Sec-
tion 3. The ground- and first-excited states are examined
numerically in Sections 4 and 5, respectively, and the pa-
per ends with a brief conclusion.

2 Theory

An electron interacting with LO phonons in an isotropic
harmonic potential and a magnetic field along the z-
direction is described by the Fröhlich Hamiltonian

H =
1
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where p =�k is the electron momentum with a band
mass µ and b†q(bq) is the creation (annihilation) operator
of an optical phonon with a wave vector q. The second
term in equation (1) is a parabolic potential which con-
fines the electron to zero dimension and so produces the
QD with confinement frequency ω•. In the last term rep-
resenting the electron-phonon interaction, Vq is defined
by [16]

|Vq|2 =
(

2πα

V

)
(�ω0)

2 r0

q
(2)

where r0 = (�/2µω0)1/2 is the polaron radius.
In order to solve equation (1) within the scheme of

our variational approach we use a variational state vector
|Ψ〉 = U1U2 |0〉ph⊗|m〉 which is the direct product of wave
function for the phonon part generated from the vacuum
by successive canonical transformations

U1 = exp

[
−iλr ·

∑
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q b†qbq

]
(3)

and
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by the wave function for the electronic part whose coor-
dinate representation is given by

〈r | m〉 =
η|m|+1√
π |m|! e

−η2r2/2 |r|m eimϕ (5)

where fq is a variational function, and λ and η are vari-
ational parameters. U2 generates coherent phonon states
acting as U−1

2 bqU2 = Fq = bq+fq, while U1transforms the
exponential term in equation (1), acting as U−1

1 eiq·rU1 =
ei(1−λ)q· r and eliminates the electron coordinates from the
Hamiltonian in the case of λ = 1 (extended state limit),
and has no effect on electronic coordinates in the case of
λ = 0 (localized state limit).

After these two successive transformations the Hamil-
tonian becomes
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The wave function in equation (5) can be deduced from
a more general trial wave function used for the ground-
and excited states in reference [17]. Hence, the expectation
value of the Hamiltonian becomes

〈Ψ |H |Ψ〉 =
〈
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where σm(q) =
〈
ei(1−λ)q· r〉

m
. In obtaining equation (8),

the diagonal part of the transformed Hamiltonian has been
taken into account, and it is assumed that

∑
q q |fq|2 = 0,

due to the symmetry of QD. Therefore Cq(r) reduces
Cq(r) =�ω0+λ2

�
2

2µ q2. Furthermore, in equation (8), if the
symmetrical Coulomb gauge A = B(−y, x, 0)/2 is chosen
for the vector potential and minimization of the resultant
equation with respect to fq is performed, then we obtain

f∗
q = − Vq

Cq

σm(q). (9)

Hence the energy functional becomes

Em =
(
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where ω = (ω2• + ω2
c/4)1/2 is the strength of total con-

finement in the lateral plane due to both magnetic field
and spatial confinement, which are characterized by the
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cyclotron frequency ωc = eB/µc and the confinement fre-
quency ω•, respectively. By means of equation (5), σm(q)
can easily be calculated, and the result is

σm(q) = 1F1

(
|m| + 1, 1;− (1− λ)2q2

4η2

)
, (11)

where 1F1 is the hypergeometric function. For conve-
nience, in equation (10), we introduce the dimensionless
parameters (�/2µω0)1/2η = 1/η and (�/2µω0)1/2q = x,
and make Em dimensionless dividing by �ω0. After in-
serting equations (2) and (11) into equation (10), and then
converting the sum in equation (10) into an integral over
the introduced dimensionless variables result in
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where L|m|(x) are Laguerre polynomials, and ω = ω/ω0,
ωc = ωc/ω0. Here, we have used the following relation [18]

1F1
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)
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(
x2
)
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Equation (12) is our fundamental result, from which we
obtain the ground(m = 0) and first (m = ±1) excited
states by minimization with respect to λ and η.

Another interesting quantity is the potential due to
the polarization cloud, which is defined by

Φ(r) = 〈Ψ |ϕ (r − r′) |Ψ〉
where

ϕ(r) = −1
e

∑
q

(
Vqbqeiq·r + h.c.

)
.

Within the present approach it can be shown that the
polarization potential becomes

Φm(r) = −2
e
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×
∞∫
0
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4

)
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(14)

where r = r/r0, y = r0q and J0(yr) is the Bessel function.

3 Limiting cases

Before discussing the numerical solutions to equation (12),
we will derive some useful analytical results for the energy
levels of a magnetopolaron in 2D parabolic QD. Choos-
ing λ equal to 0 or 1 corresponds to two different physical
regimes as pointed out in the previous section. The first
is defined by the choice of λ = 1 and is called extended
state limit, whereas λ = 0 is completely equivalent to the
Landau-Pekar method.

3.1 Extended state limit

This case is realized when the confinement length is large
and the electron-phonon interaction is weak, therefore the
electron wave function is spread over many lattice sites.
In this limit, equation (12) becomes
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2
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· (15)

Minimization with respect to η gives η2 = 2/ω, thus the
energy results in Em = (|m| + 1)ω +(mωc − απ) /2. This
result is reduced to E0 |ωc=0= ω − απ/2 of the result of
MC for the ground-state energy in the absence of a mag-
netic field. As seen from equation (15), since the inter-
action part of the energy is independent of the quantum
number m and the total confinement frequency ω, the po-
laronic correction ∆Em = − [Em − Em(α = 0)

]
is same

for all levels and is equal to απ/2.
In this limit the polarization potential takes the form
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2
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where I0(r), L0(r) are the Struve functions [19]. As ex-
pected, the polarization potential is also independent of
the quantum number m and the total confinement fre-
quency ω.

3.2 Localized state limit

When we take λ = 0 and introduce the new variable
xη/2 = y in equation (12), we obtain
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Minimization of Em of equation (17) with respect to η
gives a fourth order algebraic equation for η in the form

1
2
ω2η4+
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(
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which is to be solved numerically after the calculation of
the relevant integral for a certain value of m.

If there is a strong confinement (or strong magnetic
field) but weak electron-phonon interaction, then from
equation (18) we get η2 = 2/ω, which gives rise to the
energy
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This expression is reduced to the known results: for the
ground-state energy and in the absence of a magnetic field
it gives E0 |ωc=0= ω•−α

√
πω•/2, which is the result of the

path integral method [9], whereas if we remove the con-
fining potential it gives E0 |ω•=0=

(
ωc − α

√
πωc/2

)
/2,

which is the lowest Landau level [17].
On the other hand, if there is a strong electron-phonon

interaction and weak confinement (and/or weak magnetic
field), then from equation (18) we get η = (|m| + 1) /αKm,
which gives rise to the energy
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2
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where Km =
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dye−2y2 [
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)]2. This expression is

reduced to the ground state energy of MC, in the absence
of a magnetic field
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In this limit, the polarization potential can be easily
calculated and found as

Φ0(r) |λ=0= −α
�ω0

e

√
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γ
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2
, 1;− r2
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for the ground state.

4 The ground state

When we take m = 0 in equation (12) and arrange the
remaining expression, we obtain

E0 =
1
η2 +

1
4
ω2η2−πα

2λ

[
1 − erf

(
(1 − λ)η√

2λ

)]
e(1−λ)2η2/2λ2

(23)
where erf is the error function. For specified values of α,
ωc and ω• (or the dimensionless confinement length u• =√

2/ω•), this equation is minimized numerically with re-
spect to η and λ, and then the polaronic correction ∆E0 =
−(E0 − ω) for the ground state is calculated.

In Figure 1, we plot ∆E0, as a function of α, where
the thin straight line corresponds to the extended state
limit. This correction is obtained from equation (12) for
λ = 1 and m = 0, which is equal to ∆E0 = απ/2 and ex-
act, and also independent of ω. In the other limit, λ = 0,
when there is a strong confinement (u• = 1) and a mag-
netic field (ωc = 1), the polaronic correction calculated
from equation (23) is shown by the dashed curve in Fig-
ure 1. It appears that this curve lies below the thin line
for the extended state up to α = 2, beyond which the
curve overtakes the line. Therefore this limiting case is to
be valid above α = 2. If we remove the confinement and
the magnetic field, and if we calculate optimized results
then we obtain the solid curve in Figure 1. This lies below
the extended state up to about α = 3.8; beyond this value
the localized state exceeds the extended one. If we now
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Fig. 1. The polaronic correction for the ground-state energy,
equation (12), as a function of α, in comparison with three
different values of the variational parameter λ. The thick and
dashed lines refer to λ = 0 (strong coupling limit), for u• = ∞
and ωc = 0 (bulk limit) and u• = 1, ωc = 1, respectively, while
the thin (straight) line represents λ = 1 (extended state limit).
All coupling regime (0 < λ < 1) is represented by the dotted
line for u• = 1 and ωc = 1.

calculate the polaronic correction for the optimum value
of λ from equation (23), and plot the polaronic correction
for u• = 1 and ωc = 1, then we obtain the dotted curve in
Figure 1. This curve lies above all the limiting cases and
is valid for all coupling strength.

In Figure 2, ∆E0 is plotted with respect to the confine-
ment length u• for α = 2 and 4 and for various magnetic
fields. Since the increasing magnetic field affects in the
same manner as the decreasing confinement length, the
stronger magnetic field leads to the more confined polaron.
As seen in Figure 2, as decreasing confinement length,
∆E0 increases deeply for each value of α and curves for
various magnetic fields join asymptotically together. At
the other side, each curve goes to the bulk polaron limit
when the confinement length increases.

The polarization potential Φ0 = eΦ0/�ω0 is plotted as
a function of r/r0 in Figure 3, where the solid curve is ob-
tained from equation (16) and represent extended states
(λ = 1). It should be noted that this limiting case is inde-
pendent of the confinement length and the magnetic field.
On the other hand the horizontal dotted line is plotted
from equation (22) for α = 2, ωc = 1 and without any con-
finement, and represents localized states. It appears that
this curve is slightly dependent on r/r0. The optimum val-
ues of the potential lie between these two limiting cases;
in Figure 3, the solid lines correspond to the potential
with a confinement u• = 1 and without any confinement
u• = ∞ in a magnetic field, whereas the dashed curves
correspond to the potential in the absence of a magnetic
field. The magnetic field lowers the potential in the small
values of r/r0.
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Fig. 2. The polaronic correction as a function of the confine-
ment length for various values of magnetic field. The upper
curves are for α = 4 while the lowers are for α = 2.
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Fig. 3. The polarization potential Φ0 = eΦ0/�ω0 for the
ground-state as a function of r = r/r0. For comparison, both
the extended and localized state limits represented, respec-
tively by thick line and dotted lines are given for u• = ∞,
ωc = 1. The curves between these two belong to all coupling
regime for different values of both magnetic field and confine-
ment length as indicated in the figure.

5 The first excited states

For the first-excited states if we take m = ±1 in equa-
tion (12), then after some tedious calculations we obtain
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Fig. 4. The ground (solid)- and first-excited state energies
with m = −1 (dashed) and m = +1 (dotted) of 2D magne-
topolaron as a function of confinement length for α = 2. Inset
shows the unperturbed (α = 0) levels.

where t = (1−λ)η/
√

2λ is a new parameter used in place
of λ. This equation is now minimized with respect to η
and t.

The change of the energy Em as a function of the
confinement length u• is plotted in Figure 4 for α = 2
and ωc = 1, where the inset indicates the same depen-
dence in the absence of the electron-phonon interaction.
The ground and first excited states go to the bulk polaron
limit as the confinement length increases, whereas when
α = 0, E(−1) and E(0) levels join together as u• increases
and the degeneracy is restored. Furthermore, the separa-
tion of the energy levels are more substantial compared
with those of the results of MC, which can be ascribed to
the presence of a magnetic field.

The renormalized cyclotron mass (m∗
∓m) which is the

ratio of cyclotron mass (m∓m) to the electron band mass µ
is defined to be m∗

∓m = ωc/[E∓(m+1) − E∓m] which de-
pends on the relevant cyclotron resonance frequency for
the allowed transitions ∓(m + 1) −→ m. As done for
the magnetopolaron energy levels, one can obtain approxi-
mate analytical expressions for the renormalized cyclotron
mass both for extended and localized limits. Figure 5
shows the renormalized cyclotron mass obtained numeri-
cally associated with the transitions ∓1 −→ 0 as a func-
tion of confinement length u• for a fixed value of magnetic
field, i.e. ωc = 1. From the figure, it can be clearly seen
that the renormalized cyclotron masses decrease with in-
creasing both confinement length and coupling strength.

6 Conclusion

In this paper, we have performed a variational calcu-
lation for all coupling strength to obtain the ground
and first excited state energies of a magnetopolaron in
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Fig. 5. The cyclotron masses associated with the transition
(∓1 → 0) as a function of confinement length at fixed magnetic
field ωc = 1 for various electron-phonon coupling strength.

a parabolic QD. The variational technique that is devel-
oped by MC within the approach by the LLPH method
has been extended to a polaron in a magnetic field. The
ground and first excited state energies have been obtained
and removal of degenerecies by the confinement and the
electron-phonon interaction has been examined for all cou-
pling strength and for various limiting cases. The polar-
ization potential and its dependence on the magnetic field
have also been examined in the same framework. Our
present investigations shows that presence of spatial con-
finement in addition to electron-phonon interaction leads
to noticeable effects in the behavior of the cyclotron mass
of a magnetopolaron confined in a 2D parabolic QD under
the variation of confinement length and electron-phonon
coupling strength.
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